

Low-noise, matched dual monolithic transistor

MAT02

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/MAT02

Description

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number

MAT02-903H Low-noise, matched dual monolithic transistor

MAT02-913H Radiation Tested, Low-noise, matched dual monolithic transistor

2.1 Case Outline.

<u>Letter</u> <u>Descriptive designator</u> <u>Case Outline (Lead Finish per MIL-PRF-38535)</u>

H MACY1-X6 6-Lead can package (TO)

Figure 1 - <u>Terminal connections</u>.

3.0 Absolute Maximum Ratings. ($T_A = 25^{\circ}$ C, unless otherwise noted)

Collector to base voltage (BV _{CBO})	40V
Collector to emitter voltage (BV _{CEO})	40V
Collector to collector voltage (BV _{CC})	40V
Emitter to emitter voltage (BV _{EE})	40V
Collector current (I _C)	20mA
Emitter current (I _E)	20mA
Total power dissipation <u>1/</u>	500mW
Operating ambient temperature range	55 to +125°C
Storage temperature range	65°C to +150°C
Lead temperature (soldering, 60 sec)	+300°C
Dice junction temperature	+150°C

 $\underline{1}$ / Rating applies to applications not using heat sinking, device is free air only.

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 \odot 2008 Analog Devices, Inc. All rights reserved.

MAT02

3.1 Thermal Characteristics:

Thermal Resistance, TO-78 (H) Package Junction-to-Case $(\Theta_{JC}) = 45^{\circ}\text{C/W}$ Max Junction-to-Ambient $(\Theta_{JA}) = 150^{\circ}\text{C/W}$ Max Derate linearly at 6.67 mW/°C for ambient temperatures above 70°C.

Terminal Connections <u>1/</u>				
Terminal	6 lead TO			
1	C1			
2	B1			
3	E1			
4	E2			
5	B2			
6	C2			

1/ Substrate is connected to case on TO-78 package. Substrate is normally connected to the most negative circuit potential, but can be floated.

4.0 Electrical Table:

		Table I				
Parameter See notes at end of table	Symbol	Conditions 1/	Sub- group	Limit Min	Limit Max	Units
Current Gain	h_{FE}	$I_C = 1 \text{mA}; V_{CB} = 0 \text{V}, 40 \text{V}$	1	500		
			2, 3	275		
		$I_C = 100 \mu A; V_{CB} = 0V, 40V$	1	500		
		$I_C = 100 \mu A; V_{CB} = 15 V$	2, 3	225		
		$I_C = 10\mu A; V_{CB} = 0V, 40V$	1	400		
		$I_C = 10 \mu A; V_{CB} = 15 V$	2, 3	175		
		$I_C = 1 \mu A; V_{CB} = 0V, 40V$	1	300		
		$I_C = 1 \mu A; V_{CB} = 15 V$	2, 3	150		
Current Gain Match 2/	Δh_{FE}	I _C =10μA,100μA,1mA; V _{CB} =0V	1		2	%
Offset Voltage	Vos	$V_{CB} = 0V$	1		50	μV
			2, 3		80	
Offset Voltage vs. Temperature <u>5/</u>	TCV _{OS}	$V_{CB} = 0V$			0.3	μV/°C
Offset Voltage vs. V _{CB} 3/	ΔV_{OS} / ΔV_{CB}	$V_{CB} = 0V, 40V$	1		25	μV
Offset Voltage vs. Collector Current	$\Delta V_{OS}/\Delta I_{C}$	$V_{CB} = 0V; I_C = 10\mu A, 1mA$	1		25	
Input Offset Current	I_{OS}	$V_{CB} = 0V, 40V$	1		0.6	nA
			2, 3		9.0	
Offset Current vs. V _{CB}	ΔI_{OS} / ΔV_{CB}	$V_{CB} = 0V, 40V$	1		70	pA/V
Bulk Emitter Resistance	r_{BE}		1		0.5	Ω

Table I(cont'd)							
Parameter See notes at end of table	Symbol	Conditions 1/		Sub- group	Limit Min	Limit Max	Units
Collector Base Leakage Current	I_{CBO}	$V_{CB} = 40V$		1		200	pA
Collector Emitter Leakage Current <u>4/</u>	I _{CES}	$V_{CE} = 40V, V$	$T_{\rm BE} = 0 \text{V}$	1		200	
Collector-Collector Leakage Current <u>4/</u>	I_{CC}	$V_{\rm CC} = 40V$		1		200	
Bias Current	I_{B}	$V_{CB} = 0V, 40V$		1		25	nA
				2, 3		60	
Collector Saturation Voltage	V _{CE} SAT	$I_{\rm C} = 1 \text{mA}, I_{\rm B} = 100 \mu \text{A}$		1		0.1	V
Breakdown Voltage	BV_{CEO}	$I_C = 100 \mu A$		1	40		
Noise voltage density	e _n	I _C =1mA,	$f_O = 10Hz$	7		2	nV/√Hz
		$V_{CB}=0V$	$f_O = 100Hz$	1		1	
			$f_{O} = 1000 Hz$			1	
			$f_O = 10KHz$			1	

TABLE I NOTES:

- $\underline{1/} \quad V_{CB}$ = 15V; I_{C} = 10 $\mu A,$ unless otherwise specified.
- 2/ Current gain match (Δh_{FE}) is defined as: $\Delta h_{FE} = \frac{100(\Delta I_B)h_{FE} \text{ min}}{I_C}$
- $\underline{3/}$ Measured at $I_C=10\mu A$ and guaranteed by design over $1\mu A\leq I_C\leq 1mA.$
- $\overline{4/}$ I_{CC} and I_{CES} are verified by measurement of I_{CBO}.

5/ Guaranteed by
$$V_{OS}$$
 test $\left(TCV_{OS} \cong \frac{V_{OS}}{T} \text{ for } V_{OS} \iff V_{BE}\right) T = 298^{\circ} \text{K for } T_A = +25^{\circ} \text{C}.$

4.1 Electrical Test Requirements:

Table II				
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)			
Interim Electrical Parameters	1			
Final Electrical Parameters	1, 2, 3 <u>1/</u> <u>2/</u>			
Group A Test Requirements	1, 2, 3, 7			
Group C end-point electrical parameters	1 2/			
Group D end-point electrical parameters	1			
Group E end-point electrical parameters	1			

- 1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
- 2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in test delta limits.

		Table III		
TEST TITLE	BURN-IN ENDPOINT	LIFE TEST ENDPOINT	DELTA LIMIT	UNITS
h _{FE} @ 1mA	500	420	±80	
h _{FE} @ 100μA	500	410	±90	
h _{FE} @ 10μA	400	300	±100	
h _{FE} @ 1μA	300	180	±120	
IOS	0.6	1.1	±0.5	nA

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	Aug. 29, 2000
В	Correct typo at Dice temperature range, change RC package Θ_{JC} from 18 to 35°C/W, correct typo's on table I (subscript), make correction to Table I note 3 (change from "Measured at $I_C = 10 \text{mA}$ and guaranteed by design over $10 \text{mA} \leq I_C \leq 1 \text{mA}$ " to "Measured at $I_C = 10 \text{\mu A}$ and guaranteed by design over $1 \text{\mu A} \leq I_C \leq 1 \text{mA}$ "), add subgroup 7 for e_n , add subgroup 7 to table II, delete subgroups 4, 5, 6 from table II.	Jan. 7, 2002
С	Update web address. Delete burn-in and rad circuits	June 20, 2003
D	Update package offering	Oct. 10, 2007
Е	Update header/footer & add to 1.0 Scope description.	Feb. 25,2008
F	Remove operating junction temperature line and change to Dice Junction Temperature (T _J 150°C)	March 31, 2008